Grothendieck-Serre duality and theta-invariants on arithmetic surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serre Duality and Applications

We carefully develop the theory of Serre duality and dualizing sheaves. We differ from the approach in [12] in that the use of spectral sequences and the Yoneda pairing are emphasized to put the proofs in a more systematic framework. As applications of the theory, we discuss the RiemannRoch theorem for curves and Bott’s theorem in representation theory (following [8]) using the algebraic-geomet...

متن کامل

Generalized Serre duality

We introduce the generalized Serre functor S on a skeletally-small Hom-finite Krull-Schmidt triangulated category C. We prove that its domain Cr and range Cl are thick triangulated subcategories. Moreover, the subcategory Cr (resp. Cl) is the smallest additive subcategory containing all the objects in C which appears as the third term (resp. the first term) of some Aulsander-Reiten triangle in ...

متن کامل

Non-noetherian Grothendieck Duality

For any separated map f : X → Y of quasi-compact quasiseparated schemes, Rf∗ : D + qc(X) → D (Y ) has a right adjoint f . If f is proper and pseudo-coherent (e.g., finitely-presented and flat) then Duality and tor-independent Base Change hold for f . Preface This is a research summary written early in 1991, concerning results obtained by the author during a stay at MSRI in Berkeley during 1989–...

متن کامل

Lectures on Grothendieck Duality IV: A basic setup for duality

Let there be given, on a category C, a pair (*, *) of adjoint monoidal closed-category-valued pseudofunctors. Thus, to each object X ∈ C is associated a closed category DX , with unit object OX ; and to each C-map ψ : X → Y , adjoint monoidal functors DX ψ∗ ←−− −→ ψ∗ DY . There are also, as before, compatibilities—expressed by commutative diagrams—among adjunction, pseudofunctoriality, and mono...

متن کامل

On arithmetic class invariants

Let F be a number field with ring of integers OF , and let S be a finite set of places of F . Assume that S contains the set S∞ of archimedean places of F , and write Sf for the set of finite places contained in S. Let OS (or O, when there is no danger of confusion) denote the ring of Sf -integers of F . Write F for an algebraic closure of F . Let Y be any scheme over Spec(O). Suppose thatG is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Доклады Академии наук

سال: 2019

ISSN: 0869-5652

DOI: 10.31857/s0869-56524876617-621